Part Number Hot Search : 
FCT273DB AT54C LTS450BW ANTXV1N LM140AK V0DS00 32AD1 STPS640C
Product Description
Full Text Search
 

To Download MCF5485 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  freescale semiconductor data sheet: technical data document number: MCF5485ec rev. 3, 03/2007 ? freescale semiconductor, inc., 2007. all rights reserved. MCF5485 tepbga?388 this chapter contains electrical specification tables and reference timing diagrams for the MCF5485 microprocessor. this section contains detailed information on power considerations, dc/ac electri cal characteristics, and ac timing specifications of the MCF5485. mcf548x family features: ? coldfire v4e core ? limited superscalar v4 coldfire processor core ? up to 200mhz peak internal core frequency (308 mips (dhrystone 2.1) @ 200 mhz) ? harvard architecture ? 32-kbyte instruction cache ? 32-kbyte data cache ? memory management unit (mmu) ? floating point unit (fpu) ? internal master bus (xlb) arbiter ? 32-bit double data rate (ddr) synchronous dram (sdram) controller ? 66?133 mhz operation ? version 2.2 peripheral comp onent interconnect (pci) bus ? flexible multi-function external bus (flexbus) ? communications i/o subsystem ? intelligent 16 channel dma controller, with support for ? dedicated dma channels fo r receive and transmit on all subsystem peripheral interfaces ? up to two (2) 10/100 mbps fast ethernet controllers (fecs) ? universal serial bus (usb) version 2.0 device controller ? up to four (4) programmable serial controllers (pscs) for uart, usart, modem, codec, and irda 1.1 interfaces ?i 2 c peripheral interface ? two (2) controller area network 2.0b controllers ? dma serial peripheral interface (dspi) ? optional cryptogra phy accelerator module ? des/3des block cipher ? aes block cipher ? rc4 stream cipher ? md5/sha-1/sha-256/hmac hashing ? random number generator ? 32-kbyte system sram ? system integration unit (siu) ? interrupt controller ? watchdog timer ? two (2) 32-bit slice timers ? up to four (4) 32-bit general-purpose timers ? general-purpose i/o ports mu ltiplexed with peripheral pins ? debug and test features ? coldfire background debug mode (bdm) port ? jtag/ ieee 1149.1 test access port ? pll and clock generator ? 30 to 66.67 mhz input frequency range MCF5485 integrated microprocessor electrical characteristics
MCF5485 integrated microprocessor electrical characte ristics, rev. 3 freescale semiconductor 2 figure 1. mcf548x block diagram 1 available in MCF5485, mcf5484, mcf5483 and mcf5482 devices. 2 available in MCF5485, mcf5484, mcf5481 and mcf5480 devices. 3 available in MCF5485, mcf5483, and mcf5481 devices. pll ddr sdram memory controller pci i/o interface & ports commbus usb 2.0 phy 1 perpheral communications i/o interface & ports fec2 2 psc x 4 i 2 c fec1 usb 2.0 device 1 interface flexbus controller flexbus interface pci interface & fifos master/slave interface coldfire v4e core fpu, mmu emac 32k d-cache 32k i-cache flexcan x 2 slave bus dspi perpheral i/o interface & ports communications i/o subsystem interrupt controller xl bus arbiter system integration unit dma read dma write multi-channel dma master bus interface & fifos slice timers x 2 gp timers x 4 watchdog timer pci 2.2 controller cryptography 32k system sram crypto r/w xl bus read/write xl bus accelerator***
MCF5485 integrated microprocessor electrical characte ristics, rev. 3 freescale semiconductor 3 table of contents 1 maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 2 thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 2.1 operating temperatures . . . . . . . . . . . . . . . . . . . . . . . . .4 2.2 thermal resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . .5 3 dc electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . .5 4 hardware design considerations . . . . . . . . . . . . . . . . . . . . . . .6 4.1 pll power filtering. . . . . . . . . . . . . . . . . . . . . . . . . . . . .6 4.2 supply voltage sequencing and separation cautions . .6 4.3 general usb layout guidelines . . . . . . . . . . . . . . . . . . .8 4.4 usb power filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . .9 5 output driver capability and loading. . . . . . . . . . . . . . . . . . .10 6 pll timing specifications . . . . . . . . . . . . . . . . . . . . . . . . . . .11 7 reset timing specifications . . . . . . . . . . . . . . . . . . . . . . . . . .12 8 flexbus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12 8.1 flexbus ac timing characteristics. . . . . . . . . . . . . . . .13 9 sdram bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15 10 sdr sdram ac timing characteristics . . . . . . . . . . . . . . . .15 10.1 ddr sdram ac timing characteristics . . . . . . . . . . .18 11 pci bus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21 12 fast ethernet ac timing specifications . . . . . . . . . . . . . . . . .23 12.1 mii/7-wire interface timing specs . . . . . . . . . . . . . . .23 12.2 mii transmit signal timing . . . . . . . . . . . . . . . . . . . . . .24 12.3 mii async inputs signal timing (crs, col) . . . . . . . .24 12.4 mii serial management channel timing (mdio,mdc).24 13 general timing specifications . . . . . . . . . . . . . . . . . . . . . . . .25 14 i 2 c input/output timing specifications. . . . . . . . . . . . . . . . . .25 15 jtag and boundary scan timing. . . . . . . . . . . . . . . . . . . . . .27 16 dspi electrical specifications . . . . . . . . . . . . . . . . . . . . . . . .29 17 timer module ac timing specifications . . . . . . . . . . . . . . . . .30 18 revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30 list of figures figure 1. mcf548x block diagram . . . . . . . . . . . . . . . . . . . . . . . 2 figure 2. system pll v dd power filter . . . . . . . . . . . . . . . . . . . . 6 figure 3. supply voltage sequencing and separation cautions . 7 figure 4. preferred vbus connections . . . . . . . . . . . . . . . . . . . . 8 figure 5. alternate vbus connections . . . . . . . . . . . . . . . . . . . . 8 figure 6. usb v dd power filter . . . . . . . . . . . . . . . . . . . . . . . . . . 9 figure 7. usbrbias connection. . . . . . . . . . . . . . . . . . . . . . . . 10 figure 8. input clock timing diagram . . . . . . . . . . . . . . . . . . . . 11 figure 9. clkin, internal bus, and core clock ratios . . . . . . . 11 figure 10.reset timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 figure 11.flexbus read timing . . . . . . . . . . . . . . . . . . . . . . . . 14 figure 12.flexbus write timing . . . . . . . . . . . . . . . . . . . . . . . . 15 figure 13.sdr write timing . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 figure 14.sdr read timing . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 figure 15.ddr clock timing diagram . . . . . . . . . . . . . . . . . . . . 18 figure 16.ddr write timing . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 figure 17.ddr read timing . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 figure 18.pci timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 figure 19.mii receive signal timing diagram. . . . . . . . . . . . . . 23 figure 20.mii transmit signal timing diagram . . . . . . . . . . . . . 24 figure 21.mii async inputs timing diagram . . . . . . . . . . . . . . . 24 figure 22.mii serial management channel timing diagram. . . 25 figure 23.i 2 c input/output timings . . . . . . . . . . . . . . . . . . . . . . 26 figure 24.test clock input timing . . . . . . . . . . . . . . . . . . . . . . . 27 figure 25.boundary scan (jtag) timing . . . . . . . . . . . . . . . . . 27 figure 26.test access port timing . . . . . . . . . . . . . . . . . . . . . . 28 figure 27.trst timing debug ac ti ming specifications . . . . . 28 figure 28.real-time trace ac timing . . . . . . . . . . . . . . . . . . . . 28 figure 29.bdm serial port ac timing . . . . . . . . . . . . . . . . . . . . 29 figure 30.dspi timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 list of tables table 1. absolute maximum ratings. . . . . . . . . . . . . . . . . . . . . . 4 table 2. operating temperatures . . . . . . . . . . . . . . . . . . . . . . . . 4 table 3. thermal resistance. . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 table 4. dc electrical specifications. . . . . . . . . . . . . . . . . . . . . . 5 table 5. usb filter circuit values . . . . . . . . . . . . . . . . . . . . . . . . 9 table 6. i/o driver capability . . . . . . . . . . . . . . . . . . . . . . . . . . 10 table 7. clock timing specification . . . . . . . . . . . . . . . . . . . . . 11 table 8. mcf548x divide ratio encodings . . . . . . . . . . . . . . . 11 table 9. reset timing specification . . . . . . . . . . . . . . . . . . . . . 12 table 10.flexbus ac timing specifications. . . . . . . . . . . . . . . . 13 table 11.sdr timing specifications . . . . . . . . . . . . . . . . . . . . . 15 table 12.ddr clock crossover specifications . . . . . . . . . . . . . 18 table 13.ddr timing specifications . . . . . . . . . . . . . . . . . . . . . 18 table 14.pci timing specifications . . . . . . . . . . . . . . . . . . . . . . 21 table 15.mii receive signal timing . . . . . . . . . . . . . . . . . . . . . . 23 table 16.mii transmit signal timing . . . . . . . . . . . . . . . . . . . . . 24 table 17.mii transmit signal timing . . . . . . . . . . . . . . . . . . . . . 24 table 18.mii serial management channel signal timing . . . . . 24 table 19.general ac timing specifications . . . . . . . . . . . . . . . . 25 table 20.i 2 c input timing specifications between scl and sda . . . . . . . . . . . . . . . . . . . . . . . . 25 table 21. i 2 c output timing specifications between scl and sda . . . . . . . . . . . . . . . . . . . . . . . . 26 table 22.jtag and boundary scan timing . . . . . . . . . . . . . . . . 27 table 23.debug ac timing specification . . . . . . . . . . . . . . . . . . 28 table 24.dspi modules ac timing specifications. . . . . . . . . . . 29 table 25.timer module ac timing specifications . . . . . . . . . . . 30
MCF5485 integrated microprocessor electrical characte ristics, rev. 3 maximum ratings freescale semiconductor 4 1 maximum ratings table 1 lists maximum and minimum ratings for supply and operatin g voltages and storage temperat ure. operating outside of these ranges may cause erratic beha vior or damage to the processor. 2 thermal characteristics 2.1 operating temperatures table 2 lists junction and ambien t operating temperatures. table 1. absolute maximum ratings rating symbol value units external (i/o pads) supply voltage (3.3-v power pins) ev dd ?0.3 to + 4.0 v internal logic supply voltage iv dd ?0.5 to + 2.0 v memory (i/o pads) supply voltage (2.5-v power pins) sd v dd ?0.3 to + 4.0 sdr memory ?0.3 to + 2.8 ddr memory v pll supply voltage pll v dd ?0.5 to + 2.0 v internal logic supply voltage, input voltage level v in ?0.5 to + 3.6 v storage temperature range t stg ?55 to + 150 c table 2. operating temperatures characteristic symbol value units maximum operating junction temperature t j 105 c maximum operating ambient temperature t amax < 85 1 1 this published maximum operating ambient temperature should be used only as a system design guideline. all device operating parameters are guaranteed only when the junc tion temperature lies within the specified range. c minimum operating ambient temperature t amin ? 40 c
dc electrical specifications MCF5485 integrated microprocessor electrical characte ristics, rev. 3 freescale semiconductor 5 2.2 thermal resistance table 3 lists thermal resistance values. 3 dc electrical specifications table 4 lists dc electrical operating temperatures. this table is based on an operating voltage of ev dd = 3.3 v dc 0.3 v dc and iv dd of 1.5 0.07 v dc . table 3. thermal resistance characteristic symbol value unit 388 pin tepbga ? junction to ambient, natural convection four layer board (2s2p) jma 20?22 1,2 1 he ja and jt parameters are simulated in accordance with eia/jesd standard 51-2 for natural convection. freescale recommends the use of ja and power dissipation specifications in the system design to prevent device junction temperatures from exceeding the rated specif ication. system designers should be aware that device junction temperatures can be significantly influenced by bo ard layout and surrounding devices. conformance to the device junction temperature specificat ion can be verified by physical measur ement in the customer?s system using the jt parameter, the device power dissipation, and the method described in eia/jesd standard 51-2. 2 per jedec jesd51-6 with the board horizontal. c/w junction to ambient (@200 ft/min) four layer board (2s2p) jma 23 1 , 2 c/w junction to board ? jb 15 3 3 thermal resistance between the die and the printed ci rcuit board per jedec jesd51-8. board temperature is measured on the top surface of the board near the package. c/w junction to case ? jc 10 4 4 thermal resistance between the die and the case top su rface as measured by the cold plate method (mil spec-883 method 1012.1). c/w junction to top of package natural convection jt 2 1 ,5 5 thermal characterization parameter indi cating the temperature difference between package top and the junction temperature per jedec jesd51-2. when greek letters are not available, the thermal characterization parameter is written as psi-jt. c/w table 4. dc electrical specifications characteristic symbol min max units external (i/o pads) operation voltage range ev dd 3.0 3.6 v memory (i/o pads) operation voltage range (ddr memory) sd v dd 2.30 2.70 v internal logic operation voltage range 1 iv dd 1.43 1.58 v pll analog operation voltage range 1 pll v dd 1.43 1.58 v usb oscillator operation voltage range usb_osv dd 3.0 3.6 v usb digital logic operation voltage range usbv dd 3.0 3.6 v usb phy operation voltage range usb_phyv dd 3.0 3.6 v usb oscillator analog operation voltage range usb_oscav dd 1.43 1.58 v usb pll operation voltage range usb_pllv dd 1.43 1.58 v input high voltage sstl 3.3v/2.5v 2 v ih v ref + 0.3 sd v dd + 0.3 v
MCF5485 integrated microprocessor electrical characte ristics, rev. 3 hardware design considerations freescale semiconductor 6 4 hardware design considerations 4.1 pll power filtering to further enhance noise isolation, an external filter is strongly recommended for pll analog v dd pins. the filter shown in figure 2 should be connected between the board v dd and the pll v dd pins. the resistor and capacitors should be placed as close to the dedicated pll v dd pin as possible. figure 2. system pll v dd power filter 4.2 supply voltage sequenci ng and separation cautions figure 3 shows situations in sequencing the i/o v dd (ev dd ), sdram v dd (sd v dd ), pll v dd (pll v dd ), and core v dd (iv dd ). input low voltage sstl 3.3v/2.5v 2 v il v ss ? 0.3 v ref ? 0.3 v input high voltage 3.3v i/o pins v ih 0.7 ev dd ev dd + 0.3 v input low voltage 3.3v i/o pins v il v ss ? 0.3 0.35 ev dd v output high voltage i oh = 8 ma, 16 ma,24 ma v oh 2.4 ? v output low voltage i ol = 8 ma, 16 ma,24 ma 5 v ol ?0.5v capacitance 3 , v in =0 v, f=1 mhz c in ?tbdpf 1 iv dd and pll v dd should be at the same voltage. pll v dd should have a filtered input. please see figure 2 for an example circuit. there are three pll v dd inputs. a filter circuit should used on each pll v dd input. 2 this specification is guaranteed by design and is not 100% tested. 3 capacitance c in is periodically sampled rather than 100% tested. table 4. dc electrical specifications (continued) characteristic symbol min max units board v dd 10 w 0.1 f pll v dd pin 10 f gnd
hardware design considerations MCF5485 integrated microprocessor electrical characte ristics, rev. 3 freescale semiconductor 7 figure 3. supply voltage sequencing and separation cautions the relationship between sd v dd and ev dd is non-critical during power-u p and power-down sequences. sd v dd (2.5v or 3.3v) and ev dd are specified relative to iv dd . 4.2.1 power up sequence if ev dd /sd v dd are powered up with the iv dd at 0v, the sense circuits in the i/o pa ds cause all pad output drivers connected to the ev dd /sd v dd to be in a high impedance state. there is no limit on how long after ev dd /sd v dd powers up before iv dd must power up. iv dd should not lead the ev dd , sd v dd , or pll v dd by more than 0.4v during power ramp up or there is high current in the internal esd protection diodes. the rise times on the power supplies shou ld be slower than 1 microsecond to avoid turning on the internal esd protection clamp diodes. the recommended power up sequence is: 1. use 1 microsecond or slower rise time for all supplies. 2. iv dd /pll v dd and ev dd /sd v dd should track up to 0.9v, then separate for the completion of ramps with ev dd /sd v dd going to the higher external voltages. one way to acco mplish this is to use a low drop-out voltage regulator. 4.2.2 power down sequence if iv dd pll v dd are powered down first, sense circuits in the i/o pads cause all output drivers to be in a high impedance state. there is no limit on how long after iv dd and pll v dd power down before ev dd or sd v dd must power down. iv dd should not lag ev dd , sd v dd , or pll v dd going low by more than 0.4v during power down or there is undesired high current in the esd protection diodes. there are no requiremen ts for the fall times of the power supplies. the recommended power down sequence is: 3. drop iv dd /pll v dd to 0v 4. drop ev dd /sd v dd supplies ev dd , sd v dd (3.3v) sd v dd (2.5v) iv dd , pll v dd supplies stable 2 1 3.3v 2.5v 1.5v 0 time notes: ivdd should not exceed evdd, sd vdd or pll vdd by more than 0.4v at any time, including power-up. recommended that ivdd/pll vdd should track evdd/sd vdd up to 0.9v, then separate for completion of ramps. input voltage must not be greater than the supply voltage (evdd, sd vdd, i vdd, or pll vdd) by more than 0.5v at any time, including during power-up. use 1 microsecond or slower rise time for all supplies. 1. 2. 3. 4. dc power supply voltage
MCF5485 integrated microprocessor electrical characte ristics, rev. 3 hardware design considerations freescale semiconductor 8 4.3 general usb layout guidelines 4.3.1 usb d+ and d- high-speed traces ? high speed clock and the usbd+ and usbd- di fferential pair should be routed first. ? route usbd+ and usbd- signals on the top layer of the board. ? the trace width and spacing of the usbd+ and usbd- signal s should be such that the differential impedance is 90 . ? route traces over continuous planes (power and ground)?the y should not pass over any power/ground pl ane slots or anti-etch. when placing connectors, ma ke sure the ground plane clear-outs around each pin have ground continuity between all pins. ? maintain the parallelism (skew matched) between usbd+ and usbd-. these traces should be the same overall length. ? do not route usbd+ and usbd- traces under oscillators or parallel to clock traces and/or data buses. minimize the lengths of high speed signals that run parallel to the usbd+ and usbd- pair. maintain a minimum 50mil spacing to clock signals. ? keep usbd+ and usbd- traces as short as possible. ? route usbd+, usbd-, and usbvbus signals with a minimum amount of vias and corners. use 45 turns. ? stubs should be avoided as much as possible. if they ca nnot be avoided, stubs should be no greater than 200mils. 4.3.2 usb vbus traces connecting the usbvbus pin directly to the 5v vbus signal from the usb connector can cause long-term reliability problems in the esd network of the processor. therefore, use of an external voltage divider for vbus is recommended. figure 4 and figure 5 depict possible connecti ons for vbus. point a, marked in each fi gure, is where a 5v version of vbus should connect. point b, marked in each fi gure, is where a 3.3v version of vbus should connect to the usbvbus pin on the device. figure 4. preferred vbus connections figure 5. alternate vbus connections 4.3.3 usb receptacle connections it is recommended to connect the shield and the ground pin of the b usb receptacle for upstream ports to the board ground plane. the ground pin of the a usb receptacles for downstream ports should also be connected to the board ground plane, but industry practice varies widely on the connection of the shie ld of the a usb receptacles to other system grounds. take precautions for control of ground loops between hosts an d self-powered usb devices through the cable shield. 50k 50k mcf548 x b (3.3v) a (5v) 8.2k 20k 50k 50k mcf548 x b (3.3v) a (5v) 50k
hardware design considerations MCF5485 integrated microprocessor electrical characte ristics, rev. 3 freescale semiconductor 9 4.4 usb power filtering to minimize noise, an external filter is required fo r each of the usb power pi ns. the filter shown in figure 6 should be connected between the board ev dd or iv dd and each of the usb v dd pins. ? the resistor and capacitors should be placed as close to the dedicated usb v dd pin as possible. ? a separate filter circuit should be included for each usb v dd pin, a total of five circuits. ? all traces should be as low impedance as possibl e, especially ground pi ns to the ground plane. ? the filter for usb_phyvdd to vss should be connected to the power and ground planes, respectively, not fingers of the planes. ? in addition to keeping the filter compon ents for the usb_pllvdd as close as practical to the body of the processor as previously mentioned, special care should be taken to avoid coupling switching power supply noise or digital switching noise onto the portion of that supply between the filter and the processor. ? the capacitors for c2 in the table below should be rated x5r or better due to temperature performance. figure 6. usb v dd power filter note in addition to the above filter circuitry, a 0.01 f capacitor is also recommended in parallel with those shown. table 5 lists the resistor values and supply voltages to be used in the circui t for each of the usb v dd pins. table 5. usb filter circuit values usb v dd pin nominal voltage r1 ( )c1 ( f) c2 ( f) usbvdd (bias generator supply) 3.3v 10 10 0.1 usb_phyvdd (main transceiver supply) 3.3v 0 10 0.1 usb_pllvdd (pll supply) 1.5v 10 1 0.1 usb_oscvdd (oscillator supply) 3.3v 0 10 0.1 usb_oscavdd (oscillator analog supply) 1.5v 0 10 0.1 board ev dd /iv dd r1 c2 usb v dd pin c1 gnd
MCF5485 integrated microprocessor electrical characte ristics, rev. 3 output driver capability and loading freescale semiconductor 10 4.4.1 bias resistor the usbrbias resistor should be placed as close to the dedicat ed usb 2.0 pins as possible. the tolerance should be 1%. figure 7. usbrbias connection 5 output driver capability and loading table 6 lists values for drive capability and output loading. table 6. i/o driver capability signal drive capability output load (c l ) sdramc (sdaddr[12:0], sddata[31:0], ras , cas , sddm[3:0], sdwe , sdba[1:0] 24 ma 15 pf sdramc dqs and clocks (sddqs[3: 0], sdrdqs, sdclk[1:0], sdclk [1:0], sdcke) 24 ma 15 pf sdramc chip selects (sdcs [3:0]) 24 ma 15 pf flexbus (ad[31:0], fbcs [5:0], ale, r/w , be /bwe [3:0], oe ) 16 ma 30 pf fec (e n mdio, e n mdc, e n txen, e n txd[3:0], e n txer 8 ma 15 pf timer (tout[3:0]) 8 ma 50 pf flexcan (cantx) 8 ma 30 pf dack [1:0] 8 ma 30 pf psc (psc n txd[3:0], psc n rts /psc n fsync, 8 ma 30 pf dspi (dspisout, dspics0/ss, dspi cs[2:3], dspics5/pcss) 24 ma 50 pf pci (pciad[31: 0], pcibg[4:1], pc ibg0/pcireqout, pcidevsel, pcicxbe[3:0], pcifrm, pciperr, pcireset, pciserr, pcistop, pcipar, pcitrdy, pciirdy 16 ma 50 pf i2c (scl, sda) 8 ma 50 pf bdm (pstclk, pstddata[7: 0], dso/tdo, 8 ma 25 pf rsto 8 ma 50 pf 9.1k usbrbias
pll timing specifications MCF5485 integrated microprocessor electrical characte ristics, rev. 3 freescale semiconductor 11 6 pll timing specifications the specifications in table 7 are for the clkin pin. figure 8. input clock timing diagram table 8 shows the supported pll encodings. figure 9 correlates clkin, internal bus, and core clock frequencies for the 1x?4x multipliers. figure 9. clkin, internal bus, and core clock ratios table 7. clock timing specification num characteristic min max units c1 cycle time 20 40 ns c2 rise time (20 % of vdd to 80 % of vdd) ? 2 ns c3 fall time (80 % of vdd to 20 % of vdd) ? 2 ns c4 duty cycle (at 50 % of vdd) 40 60 % table 8. mcf548x divide ratio encodings ad[12:8] 1 1 all other values of ad[12:8] are reserved. clock ratio clkin?pci and flexbus frequency range (mhz) internal xl b, sdram bus, and pstclk frequency range (mhz) core frequency range (mhz) 00011 1:2 41.6?50.0 83.33?100 166.66?200 00101 1:2 25.0?41.5 50.0?83.0 2 2 ddr memories typically have a minimum speed of 83 mhz. some vendors specify down to 75 mhz. check with memory component specifications to verify. 100.0?166.66 01111 1:4 25 100 200 clkin c4 c1 c4 c2 c3 25 40 50 60 70 70 80 90 100 110 120 130 140 150 160 170 180 190 200 60 25.0 50.0 100.0 clkin (mhz) core clock (mhz) core clock clkin 200.0 40 50 60 70 80 90 100 30 50.0 100.0 internal clock internal clock (mhz) 2x 2x 25.0 200.0 2x 4x 100.0
MCF5485 integrated microprocessor electrical characte ristics, rev. 3 reset timing specifications freescale semiconductor 12 7 reset timing specifications table 9 lists specifications for the reset timing parameters shown in figure 10 figure 10 shows reset timing for the values in table 9 . figure 10. reset timing 8flexbus a multi-function external bus in terface called flexbus is provided on the mcf548 2 with basic functionality to interface to slave-only devices up to a maximum bus frequency of 66 mhz. it can be directly connected to asynchronous or synchronous devices such as external boot roms, flash memories, gate-array l ogic, or other simple target (slave) devices with little or no additional circuitry. for asynchronous devices, a simple chip-sel ect based interface can be used. the flexbus interface has six general purpose chip-selects (fbcs [5:0]). chip-select fbcs0 can be dedicated to boot rom access and can be programmed to be byte (8 bits), word (16 bits), or longword (32 bits) wide. control signal timing is compatible with common rom / flash memories. table 9. reset timing specification num characteristic 50 mhz clkin units min max r1 1 1 rsti and flexbus data lines are synchronized internally. setup and hold times must be met only if recognition on a particular clock is required. valid to clkin (setup) 8 ? ns r2 clkin to invalid (hold) 1.0 ? ns r3 rsti to invalid (hold) 1.0 ? ns clkin r1 r3 r2 r1 rsti mode select flexbus note: mode selects are registered on the rising clock edge before the cycle in which rsti is recognized as being negated.
flexbus MCF5485 integrated microprocessor electrical characte ristics, rev. 3 freescale semiconductor 13 8.1 flexbus ac timing characteristics the following timing numbers indicate when data is latched or driven onto the external bus, relative to the system clock. table 10. flexbus ac timing specifications num characteristic min max unit notes ? frequency of operation 25 50 mhz 1 1 the frequency of operation is the same as the pci frequency of operation. the mcf548x supports a single external reference clock (clkin). this signal defines the frequency of operation for flexbus and pci. fb1 clock period (clkin) 20 40 ns 2 2 max cycle rate is determined by clkin and how the user has the system pll configured. fb2 address, data, and control output valid (ad[31:0], fbcs [5:0], r/w , ale, tsiz[1:0], be /bwe [3:0], oe , and tbst ) ?7.0 ns 3 3 timing for chip selects only applies to the fbcs[5:0] signals. please see section 10.1, ?ddr sdram ac timing characteristics ? for sdcs[3:0] timing. fb3 address, data, and control output hold ((ad[31:0], fbcs [5:0], r/w , ale, tsiz[1:0], be /bwe [3:0], oe , and tbst ) 1? ns 3 , 4 4 the flexbus supports programming an extension of the address hold. please consult the mcf548x specification manual for more information. fb4 data input setup 3.5 ? ns fb5 data input hold 0 ? ns fb6 transfer acknowledge (ta ) input setup 4 ? ns fb7 transfer acknowledge (ta ) input hold 0 ? ns fb8 address output valid (pciad[31:0]) ? 7.0 ns 5 5 these specs are used when the pciad[31:0] signals are configured as 32-bit, non-muxed flexbus address signals. fb9 address output hold (pciad[31:0]) 0 ? ns 5
MCF5485 integrated microprocessor electrical characte ristics, rev. 3 flexbus freescale semiconductor 14 figure 11. flexbus read timing clkin ad[x:0] ad[31:y] r/w ale tsiz[1:0] fbcsn , be /bwen oe ta fb1 a[x:0] fb2 fb3 tsiz[1:0] fb4 fb5 fb6 fb7 data a[31:y]
sdram bus MCF5485 integrated microprocessor electrical characte ristics, rev. 3 freescale semiconductor 15 figure 12. flexbus write timing 9 sdram bus the sdram controller supports accesses to main sdram memory from any internal master. it supports standard sdram or double data rate (ddr) sdram, but it does not support both at the same time. the sdram controller uses sstl2 and sstl3 i/o drivers. both sstl drive mo des are programmable for class i or class ii drive strength. 10 sdr sdram ac timing characteristics the following timing numbers indicate when data is latched or driven onto the external bus, relative to the memory bus clock, when operating in sdr mode on write cycles and relative to sdr_dqs on read cycles. the MCF5485 sdram controller is a ddr controller with an sdr mode. because it supports ddr, a dqs pulse mu st remain supplied to the MCF5485 for each data beat of an sdr read. the mcf54 85 accomplishes this by asser ting a signal called sdr_dqs during read cycles. during board design, adhere to the following guidelines and sp ecs with regard to the sdr_dqs signal and its usage. table 11. sdr timing specifications symbol characteristic min max unit notes ? frequency of operation 0 133 mhz 1 sd1 clock period (t ck )7.5212ns 2 sd2 clock skew (t sk )?tbd? sd3 pulse width high (t ckh ) 0.45 0.55 sdclk 3 clkin ad[x:0] ad[31:y] r/w ale tsiz[1:0] fbcsn , be /bwen ta fb1 a[x:0] a[31:y] data fb2 fb3 tsiz[1:0] fb3 fb6 fb7 oe
MCF5485 integrated microprocessor electrical characte ristics, rev. 3 sdr sdram ac timing characteristics freescale semiconductor 16 sd4 pulse width low (t ckl ) 0.45 0.55 sdclk 4 sd5 address, cke, cas, ras, we, ba, cs - output valid (t cmv )? 0.5 sdclk + 1.0ns ns sd6 address, cke, cas, ras, we, ba, cs - output hold (t cmh )2.0 ? ns sd7 sdrdqs output valid (t dqsov )?self timedns 5 sd8 sddqs[3:0] input setup relative to sdclk (t dqsis )0.25 sdclk 0.40 sdclk ns 6 sd9 sddqs[3:0] input hold relative to sdclk (t dqsih ) does not apply. 0.5 sdclk fixed width. 7 sd10 data input setup relative to sdclk (reference only) (t dis )0.25 sdclk ? ns 8 sd11 data input hold relative to sdclk (reference only) (t dih )1.0 ? ns sd12 data and data mask output valid (t dv ) ? 0.75 sdclk +0.500ns ns sd13 data and data mask output hold (t dh )1.5ns 1 the frequency of operation is 2x or 4x the clkin frequency of operation. the mcf548x supports a single external reference clock (clkin). this signal defines the frequency of operat ion for flexbus and pci, but sdram clock operates at the same frequency as the internal bus clock. please see the pll chapter of the mcf548x reference manual for more information on setting the sdram clock rate. 2 sdclk is one sdram clock in (ns). 3 pulse width high plus pulse width low cannot exceed min and max clock period. 4 pulse width high plus pulse width low cannot exceed min and max clock period. 5 sdr_dqs is designed to pulse 0.25 clock before the rising edge of the memory clock. this is a guideline only. subtle variation from this guideline is expected. sdr_dqs pulses only during a read cycle and one pulse occurs for each data beat. 6 sdr_dqs is designed to pulse 0.25 clock before the rising edge of the memory clock. this spec is a guideline only. subtle variation from this guideline is expected. sdr_dqs pulses only during a read cycle and one pulse occurs for each data beat. 7 the sdr_dqs pulse is designed to be 0.5 clock in width. the timing of the rising edge is most important. the falling edge does not affect the memory controller. 8 because a read cycle in sdr mode continues using the dqs circuit within the mcf548x, it is most critical that the data valid window be centered 1/4 clk after the rising edge of dqs. ensuring that this happens results in successful sdr reads. the input setup spec is provided as guidance. table 11. sdr timing specifications symbol characteristic min max unit notes
sdr sdram ac timing characteristics MCF5485 integrated microprocessor electrical characte ristics, rev. 3 freescale semiconductor 17 figure 13. sdr write timing figure 14. sdr read timing sdclk0 sdclk1 sddm sddata sdaddr, sdba[1:0] sd2 cmd row sd2 sd1 sd5 col sd6 wd1wd2wd3wd4 sd13 sd12 sd3 sd4 sdcsn,sdwe, ras, cas sdclk0 sdclk1 sdcsn,sdwe, sddm sddata sdaddr, ras, cas sdba[1:0] sd2 cmd row sd2 sd1 sd5 col wd1 wd2 wd3 wd4 sd10 3/4 mclk sdrqs sddqs delayed sd11 sd8 board delay sd9 board delay sd7 tdqs reference sdclk form memories (measured at output pin) (measured at input pin) sd6 note: data driven from memories relative to delayed memory clock.
MCF5485 integrated microprocessor electrical characte ristics, rev. 3 sdr sdram ac timing characteristics freescale semiconductor 18 10.1 ddr sdram ac timing characteristics when using the ddr sdram controller, the following timing numbers must be followed to properly latch or drive data onto the memory bus. all timing numbers are relative to the four dqs byte lanes. table 12 shows the ddr clock crossover specifications. figure 15. ddr clock timing diagram table 12. ddr clock crossover specifications symbol characteristic min max unit v mp clock output mid-point voltage 1.05 1.45 v v out clock output voltage level ? 0.3 sd_vdd + 0.3 v v id clock output differential voltage (peak to peak swing) 0.7 sd_vdd + 0.6 v v ix clock crossing point voltage 1 1 the clock crossover voltage is only guaranteed when using the highest drive strength option for the sdclk[1:0] and sdclk [1:0] signals. 1.05 1.45 v table 13. ddr timing specifications symbol characteristic min max unit notes ? frequency of operation 50 1 133 mhz 2 dd1 clock period (t ck )7.5212ns 3 dd2 pulse width high (t ckh ) 0.45 0.55 sdclk 4 dd3 pulse width low (t ckl ) 0.45 0.55 sdclk 5 dd4 address, sdcke, cas , ras , we , sdba, sdcs ?output valid (t cmv ) ?0.5 sdclk +1.0 ns ns 6 dd5 address, sdcke, cas , ras , we , sdba, sdcs ?output hold (t cmh ) 2.0 ? ns ? dd6 write command to first dqs latching transition (t dqss ) ? 1.25 sdclk ? dd7 data and data mask output setup (dq ?> dqs) relative to dqs (ddr write mode) (t qs ) 1.0 ? ns 7 8 dd8 data and data mask output hold (dqs ?> dq) relative to dqs (ddr write mode) (t qh ) 1.0 ? ns 9 dd9 input data skew relative to dqs (input setup) (t is )?1ns 10 dd10 input data hold relative to dqs (t ih )0.25 sdclk +0.5ns ?ns 11 dd11 dqs falling edge to sdclk rising (output setup time) (t dss )0.5 ?ns? dd12 dqs falling edge from sdclk rising (output hold time) (t dsh )0.5 ? ns? sdclk sdclk v ix v mp v ix v id
sdr sdram ac timing characteristics MCF5485 integrated microprocessor electrical characte ristics, rev. 3 freescale semiconductor 19 dd13 dqs input read preamble width (t rpre ) 0.9 1.1 sdclk ? dd14 dqs input read postamble width (t rpst ) 0.4 0.6 sdclk ? dd15 dqs output write preamble width (t wpre )0.25?sdclk? dd16 dqs output write postamble width (t wpst ) 0.4 0.6 sdclk ? 1 ddr memories typically have a minimum speed specification of 83 mhz. check with memory component specifications to verify. 2 the frequency of operation is 2x or 4x the clkin frequen cy of operation. the mcf548x supports a single external reference clock (clkin). this signal defines the frequency of operation for flexbus and pci, but sdram clock operates at the same frequency as the internal bus clock. please see t he reset configuration signals description in the ?signal descriptions? chapter within the mcf548x reference manual . 3 sdclk is one memory clock in (ns). 4 pulse width high plus pulse width low cannot exceed max clock period. 5 pulse width high plus pulse width low cannot exceed max clock period. 6 command output valid should be 1/2 the memory bus clock (sdclk) plus some minor adjustments for process, temperature, and voltage variations. 7 this specification relates to the required input setup time of today?s ddr memories. sddata[31:24] is relative to sddqs3, sddata[23:16] is relative to sddqs2, sddata[15:8] is re lative to sddqs1, and sddata[7:0] is relative sddqs0. 8 the first data beat is valid before the first rising edge of sddqs and after the sddqs write preamble. the remaining data beats is valid for each subsequent sddqs edge. 9 this specification relates to the required hold time of today?s ddr memories. sddata[31:24] is relative to sddqs3, sddata[23:16] is relative to sddqs2, sddata[15:8] is re lative to sddqs1, and sddata[7:0] is relative sddqs0. 10 data input skew is derived from each sddqs clock edge. it begins with a sddqs transition and ends when the last data line becomes valid. this input skew must include ddr memo ry output skew and system leve l board skew (due to routing or other factors). 11 data input hold is derived from each sddqs clock edge. it begins with a sddqs transition and ends when the first data line becomes invalid. table 13. ddr timing specifications (continued) symbol characteristic min max unit notes
MCF5485 integrated microprocessor electrical characte ristics, rev. 3 sdr sdram ac timing characteristics freescale semiconductor 20 figure 16. ddr write timing sdclk0 sdclk1 sdcsn , sdwe , sddm sddata sdaddr, ras , cas sdba[1:0] cmd row dd1 dd5 dd4 col wd1wd2wd3wd4 dd7 sddqs dd8 dd8 dd7 sdclk0 sdclk1 dd3 dd2 dd6
pci bus MCF5485 integrated microprocessor electrical characte ristics, rev. 3 freescale semiconductor 21 figure 17. ddr read timing 11 pci bus the pci bus on the MCF5485 is pci 2.2 compliant. the follow ing timing numbers are mostly from the pci 2.2 spec. please refer to the pci 2.2 spec for a more detailed timing analysis. table 14. pci timing specifications num characteristic min max unit notes ? frequency of operation 25 50 mhz 1 p1 clock period (t ck )2040ns 2 p2 address, data, and command (33 < pci 50 mhz)?input setup (t is )3.0 ? ns ? p3 address, data, and command (0 < pci 33 mhz)?input setup (t is )7.0 ? ns ? p4 address, data, and command (33?50 mhz)?output valid (t dv )?6.0ns 3 p5 address, data, and command (0?33 mhz) - output valid (t dv ) ? 11.0 ns ? p6 pci signals (0?50 mhz) - output hold (t dh )0?ns 4 sdclk0 sdclk1 sdcsn , sdwe , sddqs sddata sdaddr, ras , cas sdba[1:0] cmd row dd1 dd5 dd4 wd1 wd2 wd3 wd4 sddqs dd9 sdclk0 sdclk1 dd3 dd2 sddata wd1 wd2 wd3 wd4 dd10 cl=2 cl=2.5 col dqs read preamble dqs read postamble dqs read preamble dqs read postamble
MCF5485 integrated microprocessor electrical characte ristics, rev. 3 pci bus freescale semiconductor 22 figure 18. pci timing p7 pci signals (0?50 mhz) - input hold (t ih )0?ns 5 p8 pci req/gnt (33 < pci 50mhz) - output valid (t dv )?6ns 6 p9 pci req/gnt (0 < pci 33mhz) - output valid (t dv ) ? 12 ns ? p10 pci req/gnt (33 < pci 50mhz) - input setup (t is )?5ns? p11 pci req (0 < pci 33mhz) - input setup (t is )12?ns? p12 pci gnt (0 < pci 33mhz) - input setup (t is )10?ns? 1 please see the reset configuration signals description in the ?signal descriptions? chapter within the mcf548x reference manual . also specific guidelines may need to be followed when operating the system pll below certain frequencies. 2 max cycle rate is determined by clkin and how the user has the system pll configured. 3 all signals defined as pci bused signals. does not include ptp (point-to-point) signals. 4 pci 2.2 spec does not require an output hold time. although the mcf548x may pr ovide a slight amount of hold, it is not required or guaranteed. 5 pci 2.2 spec requires zero input hold. 6 these signals are defined at ptp (point-to-point) in the pci 2.2 spec. table 14. pci timing specifications (continued) num characteristic min max unit notes clkin input setup/hold p1 p4 p6 p2 p7 output valid input valid output valid/hold
fast ethernet ac timing specifications MCF5485 integrated microprocessor electrical characte ristics, rev. 3 freescale semiconductor 23 12 fast ethernet ac timing specifications 12.1 mii/7-wire interface timing specs the following timing specs are defined at the chip i/o pin and must be translated appropriatel y to arrive at timing specs/constraints for the emac_10_100 i/o signals. the following tim ing specs meet the requirements for mii and 7-wire styl e interfaces for a range of transceiver devices. if thi s interface is used with a specific transceiver device, the tim ing specs may be altered to match that specific transceiver. figure 19. mii receive signal timing diagram table 15. mii receive signal timing num characteristic min max unit m1 rxd[3:0], rxdv, rxer to rxclk setup 5 ? ns m2 rxclk to rxd[3:0], rxdv, rxer hold 5 ? ns m3 rxclk pulse width high 35 % 65 % rxclk period m4 rxclk pulse width low 35 % 65 % rxclk period rxclk (input) rxd[3:0] (inputs) rxdv, rxer m3 m4 m1 m2
MCF5485 integrated microprocessor electrical characte ristics, rev. 3 fast ethernet ac ti ming specifications freescale semiconductor 24 12.2 mii transmit signal timing figure 20. mii transmit signal timing diagram 12.3 mii async inputs signal timing (crs, col) figure 21. mii async inputs timing diagram 12.4 mii serial management channel timing (mdio,mdc) table 16. mii transmit signal timing num characteristic min max unit m5 txclk to txd[3:0], txen, txer invalid 0 ? ns m6 txclk to txd[3:0], txen, txer valid ? 25 ns m7 txclk pulse width high 35 % 65 % txclk period m8 txclk pulse width low 35 % 65 % txclk period table 17. mii transmit signal timing num characteristic min max unit m9 crs, col minimum pulse width 1.5 ? tx_clk period table 18. mii serial management channel signal timing num characteristic min max unit m10 mdc falling edge to mdio output invalid (min prop delay) 0? ns m11 mdc falling edge to mdio output valid (max prop delay) ?25 ns m12 mdio (input) to mdc rising edge setup 10 ? ns m13 mdio (input) to mdc rising edge hold 0 ? ns txclk (input) txd[3:0] (outputs) txen, txer m7 m8 m5 m6 crs, col m9
general timing specifications MCF5485 integrated microprocessor electrical characte ristics, rev. 3 freescale semiconductor 25 figure 22. mii serial management channel timing diagram 13 general timing specifications table 19 lists timing specifications fo r the gpio, psc, flexcan, dreq , dack , and external interrupts. 14 i 2 c input/output timing specifications table 20 lists specifications for the i 2 c input timing parameters shown in figure 23 . m14 mdc pulse width high 40 % 60 % mdc period m15 mdc pulse width low 40 % 60 % mdc period table 19. general ac timing specifications name characteristic min max unit g1 clkin high to signal output valid ? 2 pstclk g2 clkin high to signal invalid (output hold) 0 ? ns g3 signal input pulse width 2 ? pstclk table 20. i 2 c input timing specifications between scl and sda num characteristic min max units i1 start condition hold time 2 ? bus clocks i2 clock low period 8 ? bus clocks i3 scl/sda rise time (v il = 0.5 v to v ih = 2.4 v) ? 1 ms i4 data hold time 0 ? ns i5 scl/sda fall time (v ih = 2.4 v to v il = 0.5 v) ? 1 ms table 18. mii serial management channel signal timing num characteristic min max unit mdc (output) m14 mdio (output) mdio (input) m15 m10 m11 m12 m13
MCF5485 integrated microprocessor electrical characte ristics, rev. 3 i 2 c input/output timing specifications freescale semiconductor 26 table 21 lists specifications for the i 2 c output timing parameters shown in figure 23 . figure 23 shows timing for the values in table 20 and table 21 . figure 23. i 2 c input/output timings i6 clock high time 4 ? bus clocks i7 data setup time 0 ? ns i8 start condition setup time (for repeated start condition only) 2 ? bus clocks i9 stop condition setup time 2 ? bus clocks table 21. i 2 c output timing specifications between scl and sda num characteristic min max units i1 1 1 output numbers depend on the value programme d into the ifdr; an ifdr programmed with the maximum frequency (ifdr = 0x20) results in minimum output timings as shown in ta b l e 2 1 . the i 2 c interface is designed to scale the actual data tr ansition time to move it to the middle of the scl low period. the actual position is affected by the prescale and division values programmed into the ifdr; however, the numbers given in ta bl e 2 1 are minimum values. start condition hold time 6 ? bus clocks i2 1 clock low period 10 ? bus clocks i3 2 2 because scl and sda are open-collector-type outp uts, which the processor can only actively drive low, the time scl or sda take to reach a high level depends on external signal capacitance and pull-up resistor values. scl/sda rise time (v il = 0.5 v to v ih = 2.4 v) ? ? s i4 1 data hold time 7 ? bus clocks i5 3 3 specified at a nominal 50-pf load. scl/sda fall time (v ih = 2.4 v to v il = 0.5 v) ? 3 ns i6 1 clock high time 10 ? bus clocks i7 1 data setup time 2 ? bus clocks i8 1 start condition setup time (for repeated start condition only) 20 ? bus clocks i9 1 stop condition setup time 10 ? bus clocks table 20. i 2 c input timing specifications between scl and sda (continued) num characteristic min max units scl i2 i6 i1 i4 i5 i7 i8 i3 i9 sda
jtag and boundary scan timing MCF5485 integrated microprocessor electrical characte ristics, rev. 3 freescale semiconductor 27 15 jtag and boundary scan timing figure 24. test clock input timing figure 25. boundary scan (jtag) timing table 22. jtag and boundary scan timing num characteristics 1 1 mtmod is expected to be a static signal. henc e, it is not associated with any timing symbol min max unit j1 tclk frequency of operation f jcyc dc 10 mhz j2 tclk cycle period t jcyc 2?t ck j3 tclk clock pulse width t jcw 15.15 ? ns j4 tclk rise and fall times t jcrf 0.0 3.0 ns j5 boundary scan input data setup time to tclk rise t bsdst 5.0 ? ns j6 boundary scan input data hold time after tclk rise t bsdht 24.0 ? ns j7 tclk low to boundary scan output data valid t bsdv 0.0 15.0 ns j8 tclk low to boundary scan output high z t bsdz 0.0 15.0 ns j9 tms, tdi input data setup time to tclk rise t tapbst 5.0 ? ns j10 tms, tdi input data ho ld time after tclk rise t tapbht 10.0 ? ns j11 tclk low to tdo data valid t tdodv 0.0 20.0 ns j12 tclk low to tdo high z t tdodz 0.0 15.0 ns j13 trst assert time t trstat 100.0 ? ns j14 trst setup time (negation) to tclk high t trstst 10.0 ? ns tclk (input) j2 j3 j3 j4 j4 v ih v il output data valid tclk data inputs data outputs data outputs data outputs 5 6 input data valid 7 output data valid 8 7 v ih v il
MCF5485 integrated microprocessor electrical characte ristics, rev. 3 jtag and boundary scan timing freescale semiconductor 28 figure 26. test access port timing figure 27. trst timing debug ac timing specifications table 23 lists specifications for the debug ac timing parameters shown in figure 29 . figure 28 shows real-time trace ti ming for the values in table 23 . figure 28. real-time trace ac timing table 23. debug ac timing specification num characteristic 50 mhz units min max d1 pstddata to pstclk setup 4.5 ? ns d2 pstclk to pstddata hold 4.5 ? ns d3 dsi-to-dsclk setup 1 ? pstclks d4 1 1 dsclk and dsi are synchronized internally. d4 is measured from the synchronized dsclk input relative to the rising edge of clkout. dsclk-to-dso hold 4 ? pstclks d5 dsclk cycle time 5 ? pstclks output data valid tclk tdi, tms, bkpt tdo tdo tdo 9 10 input data valid 11 output data valid 12 11 v ih v il tclk trst 14 13 pstclk pstddata[7:0] d1 d2
dspi electrical specifications MCF5485 integrated microprocessor electrical characte ristics, rev. 3 freescale semiconductor 29 figure 29 shows bdm serial port ac timing for the values in table 23 . figure 29. bdm serial port ac timing 16 dspi electrical specifications table 24 lists dspi timings. the values in table 24 correspond to figure 30 . figure 30. dspi timing table 24. dspi modules ac timing specifications name characteristic min max unit ds1 dspi_cs[3:0] to dspi_clk 1 tck 510 tck ns ds2 dspi_clk high to dspi_dout valid. ? 12 ns ds3 dspi_clk high to dspi_dout invalid. (output hold) 2 ? ns ds4 dspi_din to dspi_clk (input setup) 10 ? ns ds5 dspi_din to dspi_clk (input hold) 10 ? ns past current dsclk dsi dso next current d5 d3 d4 dspi_cs[3:0] dspi_clk dspi_dout dspi_din ds5 ds4 ds1 ds2 ds3
MCF5485 integrated microprocessor electrical characte ristics, rev. 3 timer module ac timing specifications freescale semiconductor 30 17 timer module ac timing specifications table 25 lists timer module ac timings. 18 revision history table 25. timer module ac timing specifications name characteristic 0?50 mhz unit min max t1 tin0 / tin1 / tin2 / tin3 cycle time 3 ? pstclk t2 tin0 / tin1 / tin2 / tin3 pulse width 1 ? pstclk revision number date substantive changes 2.2 august 29, 2005 ta bl e 7 : changed c1 minimum spec from 15.15 ns to 20 ns and maximum spec from 33.3 ns to 40 ns. 2.3 august 30, 2005 ta bl e 2 2 : changed j11 maximum from 15 ns to 20 ns. 2.4 december 14, 2005 ta bl e 9 : changed heading maximum from 66 mhz to 50 mhz. ta bl e 1 0 : changed frequency of operation maximum from 66 mhz to 50 mhz and corresponding fb1 minimum from 15.15 ns to 20 ns. ta bl e 1 0 : changed fb1 maximum from 33.33 ns to 40 ns. ta bl e 1 4 : changed frequency of operation maximum from 66 mhz to 50 mhz and corresponding fb1 minimum from 15.15 ns to 20 ns. ta bl e 1 4 : changed fb1 maximum from 33.33 ns to 40 ns. ta bl e 1 4 : changed various entry descriptions from ?(33 < pci 66 mhz)? to (33 < pci 50 mhz) ta bl e 2 3 : changed heading maximum from 66 mhz to 50 mhz. ta bl e 2 5 : changed heading maximum from 66 mhz to 50 mhz. 3 march 1, 2007 ta bl e 4 : updated dc electrical specifications, v il and v ih . ta bl e 6 : changed flexbus output load from 20pf to 30pf. added section 4.3, ?general usb layout guidelines .?


▲Up To Search▲   

 
Price & Availability of MCF5485

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X